The Myopia Epidemic

The Myopia Epidemic

Shortsightedness is reaching epidemic proportions in many parts of the world.

East Asia has been gripped by an unprecedented rise in myopia. 50 years ago, 10 -20% of the population had myopia, now the figure is closer to 90% amongst teenagers and young adults. In Seoul, the figure is a massive 96.5% of 19 year old men that are short sighted.

Other parts of the world have also seen a dramatic increase in the condition, which now affects around half of young adults in the United States and Europe — double the prevalence of half a century ago. By some estimates, one-third of the world's population — 2.5 billion people — could be affected by short-sightedness by the end of this decade. “We are going down the path of having a myopia epidemic,” says Padmaja Sankaridurg, head of the myopia programme at the Brien Holden Vision Institute in Sydney, Australia.

This threat has prompted a rise in research to try to understand the causes of the disorder — and scientists are beginning to find answers. They are challenging old ideas that myopia is the domain of the bookish child and are instead coalescing around a new notion: that spending too long indoors is placing children at risk. “We're really trying to give this message now that children need to spend more time outside,” says Kathryn Rose, head of orthoptics at the University of Technology, Sydney.

For years, myopia was associated with close work - that idea had arisen more than 400 years ago, when the German astronomer and optics expert Johannes Kepler blamed his own short-sightedness on all his study. The idea took root; by the nineteenth century, some leading ophthalmologists were recommending that pupils use headrests to prevent them from poring too closely over their books.

Researchers have consistently documented a strong association between measures of education and the prevalence of myopia. In the 1990s, for example, they found that teenage boys in Israel who attended schools known as Yeshivas (where they spent their days studying religious texts) had much higher rates of myopia than did students who spent less time at their books4. On a biological level, it seemed plausible that sustained close work could alter growth of the eyeball as it tries to accommodate the incoming light and focus close-up images squarely on the retina.

Attractive though the idea was, it did not hold up. In the early 2000s, when researchers started to look at specific behaviours, such as books read per week or hours spent reading or using a computer, none seemed to be a major contributor to myopia risk5. But another factor did. In 2007, Donald Mutti and his colleagues at the Ohio State University College of Optometry in Columbus reported the results of a study that tracked more than 500 eight- and nine-year-olds in California who started out with healthy vision.

The team examined how the children spent their days, and “sort of as an afterthought at the time, we asked about sports and outdoorsy stuff”, says Mutti.

It was a good thing they did. After five years, one in five of the children had developed myopia, and the only environmental factor that was strongly associated with risk was time spent outdoors. “We thought it was an odd finding,” recalls Mutti, “but it just kept coming up as we did the analyses.” A year later, Rose and her colleagues arrived at much the same conclusion in Australia. After studying more than 4,000 children at Sydney primary and secondary schools for three years, they found that children who spent less time outside were at greater risk of developing myopia.
Rose's team tried to eliminate any other explanations for this link — for example, that children outdoors were engaged in more physical activity and that this was having the beneficial effect. But time engaged in indoor sports had no such protective association; and time outdoors did, whether children had played sports, attended picnics or simply read on the beach. And children who spent more time outside were not necessarily spending less time with books, screens and close work. “We had these children who were doing both activities at very high levels and they didn't become myopic,” says Rose. Close work might still have some effect, but what seemed to matter most was the eye's exposure to bright light.

The leading hypothesis is that light stimulates the release of dopamine in the retina, and this neurotransmitter in turn blocks the elongation of the eye during development.

Based on epidemiological studies, Ian Morgan, a myopia researcher at the Australian National University in Canberra, estimates that children need to spend around three hours per day under light levels of at least 10,000 lux to be protected against myopia. This is about the level experienced by someone under a shady tree, wearing sunglasses, on a bright summer day. (An overcast day can provide less than 10,000 lux and a well-lit office or classroom is usually no more than 500 lux.) Three or more hours of daily outdoor time is already the norm for children in Morgan's native Australia, where only around 30% of 17-year-olds are myopic. But in many parts of the world — including the United States, Europe and East Asia — children are often outside for only one or two hours.

To test these theories some experiments were done. At a school in southern Taiwan, where teachers were asked to send children outside for all 80 minutes of their daily break time instead of giving them the choice to stay inside. After one year, doctors had diagnosed myopia in 8% of the children, compared with 18% at a nearby school.

The question was then asked ' How do we mandate that children at school spend significantly more time outdoors than they do now?' The idea was piloted in China of teaching kids in classrooms made entirely of glass. This neatly sidesteps the problems where it is too difficult to spend a lot of time outdoors - it could simply be too hot, or too cold.

Research is ongoing - light boxes in the classroom have been suggested, that deliver up to 10 000 lux illumination is one possibility.

More than a century ago, Henry Edward Juler, a renowned British eye surgeon, offered similar advice. In 1904, he wrote in A Handbook of Ophthalmic Science and Practice that when “the myopia had become stationary, change of air — a sea voyage if possible — should be prescribed”. As Wildsoet points out: “We've taken a hundred years to go back to what people were intuitively thinking was the case.”